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Using the method of matched asymptotic expansions, the interaction between 
axisymmetric laminar boundary layers and supersonic external flows is investigated 
in the limit of large Reynolds numbers. Numerical solutions to the interaction 
equations are presented for flare angles a that are moderately large. If a > 0 the 
boundary layer separates upstream of the corner and the formation of a plateau 
structure similar to the two-dimensional case is observed. In contrast to the case of 
planar flow, however, separation can occur also if a c 0, owing to the axisymmetric 
effect of overexpansion and recompression. The separation point then is located 
downstream of the corner and, most remarkable, a hysteresis phenomenon is 
observed. 

1. Introduction 
One of the goals of interacting-boundary-layer theory is to contribute to the 

understanding of the high-Reynolds-number flow around three-dimensional bodies. 
In  view of the complexity of such flows which is present even in the classical 
(hierarchical) approach it is, however, not surprising that results have been obtained 
so far only for a rather limited number of cases. As a first step triple-deck equations 
for subsonic flow over a three-dimensional hump on a flat plate have been formulated 
by Smith, Sykes & Brighton (1977). Owing to the complicated form of the pressure- 
displacement relationship, only solutions to the linearized version of these equations 
could be calculated. Solutions of the nonlinear interaction equations have been 
obtained just recently by Duck & Burggraf (1986). (Earlier nonlinear results by Sykes 
(1978), (1980) were based on a simplified version of the pressure-displacement 
relationship which is of relevance if stratification effects are of importance outside 
the boundary layer.) 

Nonlinear three-dimensional interaction effects can be studied more easily and in 
greater detail if it  is possible to exploit symmetry properties. Such simplifications 
include swept-wing configurations and axisymmetric bodies. The case of supersonic 
flow over a swept compression ramp was investigated first by Vatsa & Werle (1977) 
and Werle, Vatsa & Bertke (1973), using their interacting-boundary-layer model and 
by Gittler (1984, 1985), Kluwick (1987) on the basis of triple-deck theory. Since the 
flow in the lower deck is incompressible to leading order the equations which govern 
the flow in the directions perpendicular and tangential to the corner are decoupled, 
which considerably simplifies the numerical computations compared to Vatsa & 
Werle (1977). As a consequence it was also found possible to treat configurations with 
geometry varying slowly in the spanwise direction (Gittler 1985; Kluwick 1987). 

In the axisymmetric case the cross-flow component vanishes identically and the 
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description of the flow field only differs from the two-dimensional counterpart 
because of the more complicated form of the pressure-displacement relationship, 
provided the boundary-layer thickness is small compared to the characteristic 
diameter of the body. For supersonic free-stream Mach numbers this relationship 
then reduces to the result derived by Lighthill (1945) and Ward (1948) in their studies 
of inviscid quasi-cylindrical flow. According to this theory the flow over an 
axisymmetric compression (expansion) ramp leads to the phenomenon of 
overcompression (overexpansion), e.g. the pressure distribution starts with a jump 
discontinuity of strength O(a) and then gradually decreases (increases) to level of 
O(a2) where a denotes the scaled turning angle. One effect of viscosity is to reduce 
the pressure peak and it is therefore to be expected that incipient separation on an 
axisymmetrical ramp will occur at  larger values of the turning angle than in the 
two-dimensional counterpart. As was shown by Kluwick, Gittler & Bodonyi (1984), 
henceforth denoted as I, this is indeed the case. However, since converged solutions 
could be obtained for moderate values of la1 only two basic questions which arise in 
connection with axisymmetric ramp flow remained unanswered. 

Axisymmetric compression ramps were studied first by Horton (1971) and Vatsa 
6 Werle (1977), and using the triple-deck concept by Duck (1984) and in I. As is well 
known from the studies of plane flow a plateau region develops upstream of the corner 
if a is sufficiently large (Rizzetta, Burggraf & Jenson 1978; Ruban 1978). Recently 
the asymptotic properties of an axisymmetric compressive free interaction solution 
in which the pressure approaches a constant value far downstream were derived by 
Kluwick, Gittler Kz Bodonyi (1985). It is thus of interest to investigate whether this 
self-similar solution is of relevance for axisymmetric ramp flows. 

If the turning angle is negative the flow initially accelerates but owing to the 
phenomenon of overexpansion the pressure downstream of the corner eventutllly has 
to rise again. Accordingly, the skin-friction distributions calculated in I exhibit a 
maximum upstream of the corner and a minimum downstream of it. As shown in I 
the minimum value of the skin friction initially decreases with increasing values of 
1011. Therefore, the possibility that the boundary layer separates downstream of the 
corner if -a is sufficiently large cannot be ruled out. This is in contrast to the case 
of two-dimensional supersonic flow over an expansion ramp studied by Matveeva & 
Neiland (1967), Stewartson (1970b) and Rizzetta et al. (1978) where the pressure 
decreases monotonically throughout the interaction region. If the free-stream Mach 
number is subsonic, however, a recompression of the medium also takes place in the 
two-dimensional case and the occurrence of separation at large turning angles has 
recently been demonstrated by Smith & Merkin (1982). 

While the separation process upstream of a plane or axisymmetric compression 
ramp is self-induced the decrease of the skin friction downstream of an axisymmetrical 
expansion ramp is caused by a pressure increase which is already present if viscous 
effects are neglected. In  this respect the problem considered here bears some 
similarity with the properties of incompressible flow over a thin airfoil at incidence 
if the leading edge is rounded such as to force incipient separation to occur there 
rather than at the trailing edge as has been studied numerically by Ermak (1969) 
and Werle & Davies (1972). As pointed out by Ruban (1981 b) the solution of classical 
boundary-layer theory at  incipient separation then has the remarkable property that 
it can be extended continuously through the point of vanishing skin friction. It is 
interesting to note that this solution is closely related to the results of Oswatitsch 
(1957) in his study of boundary-layer separation. In contrast to the case investigated 
by Stewartson (19704, therefore, the singularity which develops at the separation 
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point according to the classical hierarchical approach is weak provided the angle of 
attack differs only slightly from the value at incipient separation, and an interactive 
theory may be used to obtain uniformly valid solutions (Ruban 1981 a ; Stewartson, 
Smith & Kaups 1982; Brown & Stewartson 1983). Most interesting, it is found that 
there is a range of values of the angle of attack for which these solutions are not 
unique. This leads to the question of whether a similar phenomenon may occur also 
in the case of supersonic flow over an axisymmetric expansion ramp. 

2. Problem formulation 
The following study is concerned with the properties of viscous flow over flared 

cylinders, as depicted in figure 1,  at high values of the Renolds number Re = C, &/Fa. 
Here C,, & and v", respectively denote the free-stream velocity, the distance of the 
corner from the front of the cylinder and the kinematic viscosity in the external 
stream. It will be assumed that the boundary layer that forms on the cylindrical body 
of radius d = O(Re%) is laminar and that the external flow is supersonic. Asymptotic 
analysis for 

s = Re-i < 1 (1 )  

then shows that the region in which the interaction between the laminar boundary 
layer and the inviscid outer flow takes place exhibits a three-layered structure now 
commonly termed triple-deck structure. As in the two-dimensional counterpart of 
the problem considered here (Rizzetta et d.  1978), the properties of the upper deck 
and main deck may be investigated analytically while the solution of the lower-deck 
equations in general requires numerical treatment. For simplicity in the numerical 
computations it is convenient to scale as many of the physical parameters as possible 
out of these equations. To this end the following scaled variables are introduced 
(see I): 

where f i ,  p, P, 2,  r", C, v", A, M and C respectively denote the pressure, the density, 
the temperature, the streamwise and radial coordinates, the axial and radial velocity 
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components, the disturbance of the displacement thickness, the Mach number, and 
the Chapman constant occurring in the linear viscosity law 

- .-.- .-. .-.-.- 

while indices 00 and w refer to free-stream and wall conditions, respectively. 
Furthermore, h = 0.33206 just as in the planar case. 

Using the above definitions, the governing equations in the lower deck, to leading 
order, reduce to 

I au au ap a2u au av 

ax ay dx ay2’ ax ay 
u-+v- = --+- -+- = 0, 

L‘ 

Here 

2 

O( LRe-1) 

u = v = 0 for y = F ( x ) ,  

u = y+A(x), y-+ 00 for all x, 

u = y, x+-m for ally, 

denotes the function introduced by Ward (1948) in his study of quasi-cylindrical flow 
and y = F(x) characterizes the body shape. In the case considered here 

(07 x< - p ,  

t 

F ( z ) =  a -+-+- , - p < x < p ,  1 [I; ; :I 
\ax,  2 > p, 

which corresponds to the smoothed version of the cylinder-cone problem investigated 
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in I. The case of a sharp corner is obtained in the limit p = 0. Furthermore, the values 
a and & of the scaled and unscaled ramp angle are related by 

Finally, by applying Prandtl’s transposition theorem (e.g. Rosenhead 1963) 

z = y - F ( x ) ,  w = w-uF’(x) (6) 

the boundary-value problem ( 3 )  is written in the form 

u = w = O  a t z = O  ( 7 4  

u - + z + A ( x ) + P ( x ) ,  z+m, for all x ,  ( 7 4  

u + z ,  x+--oo, for all z, (7 4 

p ( x )  = -A’(x)  +I W ( e )  2-5 A’([) dg, 
a -a 

( 7 f  1 

which will be used in the subsequent sections. 

3. Numerical method 
The system of equations and boundary conditions ( 7 )  was cast into finite-difference 

form using centred differences in the normal direction and the implicit Crank-Nicolson 
scheme of second order for the streamwise direction. The numerical method closely 
follows that of Brown & Williams (1975).  The only difference concerns the relationship 
( 7 f )  between p ( x )  and A ( x )  in which the function W(z)  was determined by means of 
Gauss-Laguerre formula (cf. Kluwick et al. 1985). 

Exploiting the parabolic nature of the problem, the numerical solution is initiated 
at a suitably chosen negative value of x , x l  say, by giving the pressure a small 
increment p, and taking the velocity profile to be that of a uniform shear flow. The 
solution of the problem for x < O  then develops in one of three different ways, 
according to whether p ,  is positive, negative or zero. If p ,  is zero, the trivial solution 
u = y, v = 0, p = 0 is obtained, whereas a positive or negative pressure kick results 
in the formation of a compressive or expansive free interaction, respectively (Kluwick 
et al. 1985). Far downstream of the corner it is required that the pressure distribution 
exhibits the asymptotic behaviour 

following from inviscid theory. We can then expect a unique solution in which the 
pressure a t  x1 is a fixed value p , .  As in the investigations of Daniels (1974) the value 
of p ,  was held fixed at + for a > 0, (a < 0), respectively, and x,  was 
adjusted since this procedure avoids the iterative repetition of the computations in 
x < -p .  

As already pointed out, the solution for p, 9 0 takes on one of two distinct forms, 
terminating either in a singularity ( x ,  = xA,  p - + -  00,7-++ 00, x+x, )  or in a plateau 
structure (2, = xB,p+const.,7-+O-,x+oo). Taking a new value x, = i (x ,+x,)  the 

( -  
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FIGURE 2 (a, b ) .  For caption see facing page. 

solution was computed again, x1 readjusted accordingly and the process repeated 
until the difference between the old and the new value was less than 10-l2. In this 
way x1 converges to a value of highest possible accuracy ( x  15 digits, depending on 
the machine error) which ensures that the undesirable occurrence of an expansive or 
compressive eigensolution is pushed downstream as far as possible. 

All numerical results are shown in x-sections in which the difference between the 
expansive and the compressive solution is less than the plotting accuracy. The 
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FIGURE 2. Numerical results for a = 1 ,p  = 1 and various positive cone angles a: -, a = 1 4 ;  
and 0 0 0 0 ,  a = 5,  spectral method according to I, N ,  = 400, Ax = 0.25-0.5, N ,  = 40, Az = 0.3; 
-, a = 5-9, fmite-difference method, Ax = 0.05, Az = 0.2. (a) Pressure distribution p ( z ) :  
. . . . . . . . , asymptotic relationship (8 ) ;  0, separation and reattachment points. (b) Wall-shear- 
stress distribution ~ ~ ( x ) .  (c) Displacement thickness distribution --A(z). 

divergent behaviour of the two eigensolutions for x+ co is shown only in figure 2 for 
a = 9 and figure 4 for a = -11.5. 

Since the equations of motion are parabolic in the streamwise direction, a difficulty 
arises if recirculation zones exist in the flow field. As in many previous investigations 
of separated boundary layers (for example Smith 1977) the Reyhner & Flugge-Lotz 
(1968) approximation was used to prevent numerical instability once flow reversal 
occurs. Provided the reversed mass flux is not too large, this approximation should 
give a fairly accurate solution. This is confirmed by the very good agreement between 
the calculated pressure distribution and the asymptotic relationship (8) - even for 
large values of la( - since the numerical program, outlined above, works automatically 
and leads to a unique solution whose behaviour for x+ 00 cannot be influenced, in 
contrast to the spectral method used in I. 

4. Results for positive cone angles 
Before turning to the more interesting case a < 0 we briefly summarize the results 

for positive cone angles. Figure 2(a)  shows the pressure distribution inside the 
interaction region for a = 1,p = 1 and various values of a > 0. For comparison the 
results for a 6 5, which were obtained earlier in I by means of a spectral method, 
are also included herein. As can be seen, both results for a = 5 are in excellent 
agreement over most of the interaction region. Minor discrepancies which occur for 
large x most probably reflect the inability of the spectral solution to satisfy the 
asymptotic relationship (8) owing to its inherently periodic structure. 

16 PLM 179 
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FIGURE 3. Comparison between experimental and theoretical results: + + + + , experimental data 
from Leblanc & Ginoux (1970, figure 4a) ;  M ,  = 2.25, Re = 8.7 x lo4, cZ = 7.5", a = 34.6; -, 
present calculations, finite-difference method, Ax = 0.05, Az = 0.2 ; 0, separation and reattachment 
point. 

As expected, the pressure increase due to reattachment is much smaller than in 
the two-dimensional case. Moreover, the maximum of the pressure distribution differs 
only slightly from the value a t  the reattachment point and the compression region 
upstream of the reattachment point is followed by a zone of rapid expansion caused 
by the increasing stream tube area. Finally, i t  should be noted that the formation 
of a plateau region for large values of a is clearly visible in figure 2 (a). 

As shown by Kluwick et al. (1985) the behaviour of A ( z )  inside the plateau region 
is given by 

(9) 

In order to estimate the length Lsep of the separated flow region for a large we tacitly 
assume (i) that the length of the zone over which reattachment is (almost) completed 
is small compared to the interaction lengthscale, as in the two-dimensional case 
studied by Daniels (1979, 1980), so that axisymmetric effects are negligibly small; 
and (ii) that the pressure increase at reattachment is equal to the stagnation pressure 
of the reattachment streamline (Messiter, Hough & Feo 1973; Burggraf 1975). Using 
(9) and the result derived by Kluwick et al. (1985) that the structure of the free shear 
layer in the plateau region is just the same as in the case of planar flow (Stewartson 
& Williams 1973) one then obtains 

(10) 

where C x 3.47 (Burggraf 1975). 
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Since Liep = o(Lsep/lnLsep) and p ,  = 0(1) (Kluwick et al. 1985), (10) reduces to 

Thus the length of the recirculation zone forming on a flared cylinder is much smaller 
than that caused by a two-dimensional compression ramp of equal turning angle a, 
where one finds Lsep = O(ai) (Burggraf 1975). As a conse uence, also the pressure rise 
Apr due to reattachment is smaller, although Apr = O(Lge,) in both cases. 

In  figure 2(b, c) the distributions of the wall shear stress and the displacement 
thickness A ( x )  are depicted. Again, comparison of the results for a = 5 with 
calculations performed in I using a spectral method yields excellent agreement. 

Finally, figure 3 shows a typical example of a comparison between the experimental 
data obtained by Leblanc & Ginoux (1970) in the 16 in. x 16 in. continuous supersonic 
wind tunnel of the von Karman Institute and triple-deck solutions. The test con- 
ditions correspond to adiabatic flow over a flared cylinder with Z = 7.5' at M, = 2.25 
with Re = 8.7 x lo4 and a = 34.6. Inspection of figure 3 indicates that the initial 
pressure rise in the interaction region is overpredicted by the asymptotic theory, as 
in the two-dimensional case studied by Rizzetta et al. (1978). Furthermore, it is seen 
that the pressure maximum is lower than the value determined experimentally by 
about 11 % . Again, as in the case of the flow over a compression ramp, Rizzetta et al. 
(1978), this discrepancy seems to be caused mainly by the linearization of the 
governing equations in the upper deck. For the above values of M ,  and oc" linear 
theory underpredicts the pressure jump across the shock that forms at  the corner by 
about 15% if viscous effects are neglected. In contrast to the two-dimensional 
counterpart, however, viscous effects lead to a reduction of the pressure maximum 
in the axisymmetric case, which explains why the observed error is somewhat smaller 
than the estimate following from inviscid theory. 

B 

5. Results for negative cone angles 
Numerical solutions of the full nonlinear interaction equations for a = 1, p = 1 and 

0 < -a < 7 have been presented in I (figures 10 and 11) .  In all cases it was found 
that the pressure reaches a minimum value immediately downstream of the corner and 
then starts to rise again in agreement with the asymptotic relationship (8).  As to be 
expected the pressure minimum is associated with a maximum of the wall shear stress 
(occurring slightly upstream of the corner) while the recompression of the flow leads 
to a minimum in the T, distribution downstream of x = 0. As pointed out in I the 
minimum value of T, decreases progressively with increasing values of JaJ indicating 
the possibility of separation if la1 is sufficiently large. By extrapolation of the available 
data it was conjectured that incipient separation would occur at a x - 11.2. 

Using the spectral method outlined in I additional calculations up to values of the 
turning angle of a = - 12 have subsequently been performed which showed the 
existence of separated regions for a < - 11.18 in good agreement with the extrapo- 
lated value. Unfortunately, however, no converged solution could be obtained for 
a < -12. In order to study the flow properties at even smaller values of a the 
finite-difference method outlined in $3 was applied. 

In  figure 4 results for a = - 11.5 calculated by means of the spectral as well as the 
finite-difference method are compared. Owing to the inherently periodic nature of the 
spectral solution the ultimate decay of the pressure disturbances occurs faster than 
predicted by the asymptotic relationship which is in excellent agreement with the 

16-2 
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10 20 

FIQURE 4. Numerical results for a = 1 ,  p = 1 and a = - 11.5: -, finite-difference method, 
Ax = 0.05, AZ = 0.2; . * * * . ., spectral method, N ,  = 400, Ax = 0.25, N ,  = 50, Az = 0.3. 

pressure distribution following from the finite-difference scheme. The associated 
increase of the pressure gradient results in slightly smaller values of the shear stress 
inside and downstream of the separated-flow region. 

Further decrease of a initially leads to solutions exhibiting separation bubbles of 
monotonically increasing length. However, efforts to extend the results beyond 
a = - 11.5 were hindered at first by an unexpected difficulty : even small changes of 
a resulted in shear-stress distributions with significantly longer regions of recircula- 
ting flow than before, indicating either the occurrence of a jump phenomenon or the 
existence of a range of ramp angles for which the solutions are no longer unique. 
Careful numerical studies indicate that the latter possibility is correct. 

In  figure 5 the positions of the separation point and the reattachment point are 
plotted as a function of a. If a > - 11.28 (A) the flow remains attached and the 
solutions are unique. In  contrast, two solutions exhibiting relatively long recircu- 
lation zones and a third one yielding attached flow are obtained if 
- 11.42 < a < - 11.28 (B). If the value of a decreases below - 11.42 attached flow 
is no longer possible but the occurrence of three different types of separated flow is 
observed within the range - 12.42 < a < - 11.42 (C). Unfortunately, the numerical 
scheme used in this study did not yield converged solutions with long separation 
bubbles for values of a less than - 11.7. The numerical difficulties are most probably 
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FIQURE 5. Position of the separation point x, and the reattachment point xr for various 
negative cone angles a (a = l , p  = 1). 

associated with the rapid changes of the field quantities near the reattachment point 
which causes the FLARE approximation to break down. Based on the available 
numerical data, however, it seems reasonable to assume that the solutions are again 
unique if a < - 12.42 (D). 

The distributions of the pressure, the wall shear stress and the displacement 
thickness for various values of a:O < -a < 12.42, and p = 1 are depicted in figure 6. 
To investigate whether the loss of uniqueness of triple-deck solutions for axisym- 
metric expansion ramps is caused by the smoothing of the corner, calculations for 
p = 0 have also been performed. It was found that the results are qualitatively similar 
to those for p = 1 .  As to be expected, incipient separation occurred at a smaller 
turning angle. Furthermore, the calculations showed that the range of values a for 
which triple-deck solutions were not unique (regions B and C) had reduced slightly 
in size. 

As an example of the flow patterns that are obtained when a varies in region C, 
figure 7 shows streamlines in the lower deck for p = 1, a = - 11.6. A short and shallow 
separation bubble is barely visible in figure 7 (a), which corresponds to section (a) of 
the curve depicted in figure 5. The solution corresponding to section (b) (indicated 
by the dotted line) exhibits a longer separation bubble and separation occurs further 
upstream, figure 7 (b). Finally, the flow pattern associated with section ( c )  is plotted 
in figure 7 ( c ) .  The separation point has moved even further upstream and a long 
recirculation zone extends up to 2 = 13.1. 
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FIGURE 6 ( a ,  b ) .  For caption see facing page. 

The pressure and shear-stress distributions for p = 1 and a = - 11.6 are shown 
separately in figure 8 (a,  b ) .  The results for the solution with a short separation bubble 
(figure 7 a )  are qualitatively similar to those for attached flow plotted in figure 6. 
However, the two solutions with longer recirculation zones exhibit interesting new 
features. In particular, it is seen that the minimum of the pressure disturbances 
reduces as the length of the separated-flow region increases. More important, i t  is seen 
that the shape of the pressure and shear-stress distributions downstream of the 
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FIQURE 6. Numerical results for a = 1, p = 1 and various negative cone angles a : a = - 1, - 3, - 5 : 
spectral method, N ,  = 400, Ax = 0.25, N ,  = 50, Az = 0.25. Other values of a: finite-difference 
method, Ax = 0.05, Az = 0.4. (a) Pressure distribution ~ ( 2 ) :  0, separation and reattachment 
points. (b)  Wall-shear-stress distribution T,(z). (c) Displacement thickness distribution -A@) : 0,  

asymptotic relationship (9). 

separation points now qualitatively resemble those for separated flows over axisym- 
metric compression ramps depicted in figure 2 (a) in spite of the fact that the pressure 
disturbances within the recirculation zones are negative. In  fact, the occurrence of 
a region of almost constant negative pressure in the solution corresponding to the 
flow pattern in figure 7 (c) represents one of the most striking aspects of the present 
calculations. It should be noted, however, that the value of the plateau pressure is 
no longer only a function of the scaled cylinder radius a as in the case of axisymmetric 
compression ramps but will depend on the ramp angle a as well. 

According to ( 5 )  changes of the free-stream Mach number and/or the Reynolds 
number result in changes of a even if the unscaled ramp angle oc" is held fixed. It is 
therefore interesting to investigate the associated variations of the flow properties. 
Let us assume then that a decreases continuously starting from a value within 
region A of figure 5 corresponding to attached flow. Incipient separation will occur at 
a = - 11.42 and a small separation bubble of continuously increasing length forms 
as one moves along branch (a) to even smaller values of a. However, when a exceeds 
the critical value of - 12.42 solutions with a short separation bubble are no longer 
possible and consequently a discontinuous transition to solutions with a long 
recirculation zone corresponding to branch (c) must take place. If the process is 
reversed, that is if a increases again, the length of the separation bubble will initially 
decrease continuously until it assumes a minimum value at  a = - 11.28. Further 
increase of a leads to a sudden disappearance of the recirculation zone and attached 
flow is recovered. The evolution of the flow pattern when a varies from A + D + A 
thus is characterized by the presence of a hysteresis. 

Owing to the lack of numerical solutions and experimental data a complete 
picture of the flow structure for large values of la1 cannot be given yet. Guided by the 
available numerical results it seems reasonable to assume (i) that the separation point 
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I 

FIGURE 7. Streamlines in the lower-deck for a = 1, p = 1 and a. = - 11.6 corresponding to the three 
different branches depicted in figure 5. 

X 

approaches the corner and (ii) that reattachment takes place over a distance which 
tends to zero on the triple-deck scale, both in the limit (a~-+co(a”-+O,~-+O, 

As a consequence of (i) the shape of the free shear layer bounding the recirculation 
region should be described asymptotically by (9) far downstream of the corner. Thus, 
the distance L of the reattachment point from the corner can be estimated by 
calculating the intersection point between the free shear layer y = A(x) and the wall 
y = - a x .  This leads to the relationship 

&/€2+- co). 

between the almost constant (negative) pressure p ,  within the separated-flow region 
and the length L of the separation bubble. 

According to (ii) the pressure rise associated with reattachment can be determined 
approximately from the equations for inviscid planar flow. Equating the pressure 
increase - ( -a + A’(L)) caused by the turning of the external flow and the pressure 
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FIGURE 8. Pressure and wall-shear-stress distribution for a = 1, p = 1 and a = - 11.6 corresponding 
to the three different branches depicted in figure 5:  . . . . . -, asymptotic relationship (8); 0, 
separation and reattachment points. 

X 

increase - C-iLg generated by the isentropic compression along the reattachment 
streamline one obtains 

a-- Po N CfLi. (13) a lnL 

Although this expression is analogous to (lo), the resulting dependence of L on lal, 

L N Clalt, (14) 

is different from (11)  holding for positive flare angles since po = O(a In L/L) rather 
than O(1) if a < 0. Thus the length of the separated-flow region is much larger in the 
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latter case although the same mechanism of reattachment has been assumed for 
a > 0 and a < 0. Finally, it should be noted that (14) agrees with the relationship 
that determines the extent of the separation bubble generated by a compression 
ramp, Burggraf (1975). 

Inspection of (9) and (12) indicates that the largest term neglected in the 
asymptotic relationship (14) is O()a(i/ln (al). Consequently, the applicability of (14) 
is restricted to values a for which l/ln )a1 6 1.  Numerical solutions corresponding to 
branch (c) of figure 5, however, could be obtained for 01 > -11.7,  yielding 
l/ln la1 > 0.4 only. It is, therefore, not surprising that the predictions for L and p, 
which follow from (12) ‘and (14) still differ significantly from the numerical results 
even for the largest value of the corner angle a = - 11.7. In this case evaluation of 
the asymptotic formulae (12) and (14) gives L x 1 3 8 . 9 , ~ ~  x -0.7 while according to 
the numerical computations L, x 1 2 . 8 , ~ ~ ~  x -3.0. For completeness rather than 
comfort it might be added that comparison between the numerical results of Rizzetta 
et al. (1978), Ruban (1978) and the asymptotic relationships derived by Burggraf 
(1975) for the flow over two-dimensional compression ramps leads to discrepancies 
of comparable magnitude. 

Some encouragement may be gained, however, by checking (12) for consistency 
with the numerical results for L and p,. For example, insertion of L, = 12.8 into this 
asymptotic relationship yields p, x -3.1, which differs from pon = - 3.0 by less than 
4 % . Moreover, comparison of the asymptotic formula (9) with the numerical results 
for a = - 11.6 shows reasonably good agreement if a coordinate shift is allowed for, 
figure 6 ( c ) .  The slope of the free shear layer near the reattachment point is 
overpredicted by about 10%: A’(12) x 17.4,Ak (12) x 15.7. In contrast, the corre- 
sponding values of the turning angle of the external flow, which follow by subtrac- 
tion of two large numbers : Aa = A’ +a, are 5.7 and 3.0, respectively, and differ by 
almost 100 %. This indicates that the large discrepancies between the asymptotic and 
numerical results for L and p, are mainly caused by the poor approximation of the 
turning angle of the external flow (left-hand side of (13)) due to the slow decay of 
logarithmic terms. Despite this difficulty, the above considerations seem to lend at  
least partial support to the proposed model which leads to (12) and (14). However, 
clearly much more analytical and numerical efforts will be necessary to produce a 
self-consistent and complete picture of the reattachment process. 

6. Conclusions 
Laminar supersonic flows past flared cylinders have been investigated in the limit 

of large Reynolds numbers for positive as well as negative cone angles a. 
In  the case of a > 0 it is found that the axisymmetric spreading of the flow leads 

to an increase of the turning angle for incipient separation. If a is sufficiently large 
a plateau region, qualitatively similar to that observed for two-dimensional flows, 
is seen to develop upstream of the corner. 

In contrast to the two-dimensional case, however, it is shown that large turning 
angles will also lead to separation if a < 0. Moreover, the numerical results indicate 
that there exists a regime of turning angles in which the solution is not unique. In 
fact within this regime the flow structure may assume three different forms: (i) one 
with a short separation bubble the length of which decreases as (a) decreases; (ii) one 
with a longer separation bubble the length of which decreases as (a1 increases; and 
(iii) one with a large separated-flow region having almost constant pressure, the 
length of which again increases with increasing values of )a(. It does not seem to be 
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unlikely that it is this third form of solutions that describes the initial stages of the 
transition from attached flow (a > - 1 1.42) to grossly detached flow of Kirchhoff type 
as la1 increases beyond the value (011 = 12.42. This leads to the conjecture that this 
transition is not a smooth process but is accompanied by a jump phenomenon. 
Non-uniqueness of interaction solutions has also been encountered in recent studies 
of marginally separated flows (Stewartson et al. 1982; Brown & Stewartson 1983). In 
this case the results form two branches as r (a suitably scaled angle of attack a) varies 
between 0 and 2.46 (with the exception of the range 1.25 < r < 1.40 where four 
different solutions are possible) which are characterized by properties similar to those 
listed under (i) and (ii). In particular it is found that according to the second type 
of solution the point of flow reversal is tending to a limit while the reattachment point 
is tending to downstream infinity as r+O + , i.e. as the angle of attack is reduced 
to its value at incipient separation. However, as pointed out by one of the referees 
in Brown & Stewartson (1983) : ‘the scaling must break down a t  reattachment due 
to the promotion of neglected effects. He suggests that this trend may be reversed 
for a rescaled problem with the eddy growing as a increases and a match with grossly 
separated flows, such as the Kirchhoff free-streamline flow.. . eventually being 
achieved. ’ 

It is of course tempting to assume that solution of type (iii) calculated in the present 
triple-deck study may be closely related to the branch of solutions (if it exists) that 
is missing in the description of marginal separation derived so far. It should, therefore, 
be interesting to investigate the properties of the classical boundary layer on smooth 
convex corners for large values of the scaled body radius a in more detail, to formulate 
the associated problem of marginal separation and to examine the behaviour of the 
solutions as a reduces to a quantity of order one. 

As pointed out earlier, the differences between triple-deck solutions for planar and 
axisymmetric expansion ramps are mainly due to the effect of recompression which 
occurs in the latter case but is absent in supersonic two-dimensional flow. However, 
such a pressure increase downstream of the corner is present also in the two- 
dimensional case provided the external flow is subsonic and indeed the possibility of 
boundary-layer separation has been demonstrated by Smith & Merkin (1982). In view 
of the results obtained in the present investigation it seems well worth extending their 
calculations to even higher turning angles. 

The authors are indebted to one of the referees for helpful comments. This research 
was sponsored by the ‘Fonds zur Forderung der wissenschaftlichen Forschung in 
Osterreich ’ under Contract P5557. 

This paper is dedicated to Professor DrK. Oswatitsch on the occasion of his 
7 5t h birthday. 
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